Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Antimyeloma effects of a sesquiterpene lactone parthenolide.

PURPOSE: Nuclear factor-kappaB (NF-kappaB), activated in multiple myeloma (MM) cells by microenvironmental cues, confers resistance to apoptosis. The sesquiterpene lactone parthenolide targets NF-kappaB. However, its therapeutic potential in MM is not known.

EXPERIMENTAL DESIGNS: We explored the effects of parthenolide on MM cells in the context of the bone marrow microenvironment.

RESULTS: Parthenolide inhibited growth of MM cells lines, including drug-resistant cell lines, and primary cells in a dose-dependent manner. Parthenolide overcame the proliferative effects of cytokines interleukin-6 and insulin-like growth factor I, whereas the adhesion of MM cells to bone marrow stromal cells partially protected MM cells against parthenolide effect. In addition, parthenolide blocked interleukin-6 secretion from bone marrow stromal cells triggered by the adhesion of MM cells. Parthenolide cytotoxicity is both caspase-dependent and caspase-independent. Parthenolide rapidly induced caspase activation and cleavage of PARP, MCL-1, X-linked inhibitor of apoptosis protein, and BID. Parthenolide rapidly down-regulated cellular FADD-like IL-1beta-converting enzyme inhibitory protein, and direct targeting of cellular FADD-like IL-1beta-converting enzyme inhibitory protein using small interfering RNA oligonucleotides inhibited MM cell growth and lowered the parthenolide concentration required for growth inhibition. An additive effect and synergy were observed when parthenolide was combined with dexamethasone and TNF-related apoptosis-inducing ligand, respectively.

CONCLUSION: Collectively, parthenolide has multifaceted antitumor effects toward both MM cells and the bone marrow microenvironment. Our data support the clinical development of parthenolide in MM therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app