JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

AMP-activated protein kinase and adipogenesis in sheep fetal skeletal muscle and 3T3-L1 cells.

Marbling, or i.m. fat, is an important factor determining beef quality. Both adipogenesis and hypertrophy of existing adipocytes contribute to enhanced marbling. We hypothesized that the fetal stage is important for the formation of i.m. adipocytes and that AMP-activated protein kinase (AMPK) has a key role in adipogenesis during this stage. The objective of this study was to assess the role of AMPK in adipogenesis in fetal sheep muscle and 3T3-L1 cells. Nonpregnant ewes were randomly assigned to a control (Con, 100% of NRC recommendations, n = 7) or overfed (OF, 150% of NRC, n = 7) diet from 60 d before to 75 d after conception, when the ewes were killed. The fetal LM was collected at necropsy for biochemical analyses. The activity of AMPK was less in the fetal muscle of OF sheep. The expression of peroxisome proliferator-activated receptor (PPAR)gamma, a marker of adipogenesis, was greater in OF fetal muscle compared with Con fetal muscle. To further show the role of AMPK in adipogenesis, we used 3T3-L1 cells. The 3T3-L1 cells were incubated in a standard adipogenic medium for 24 h and 10 d. Activation of AMPK by 5-aminoimidazole-4-car-boxamide-1-beta-d-ribonucleoside dramatically inhibited the expression of PPARgamma and reduced the presence of adipocytes after 10 d of differentiation. Inhibition of AMPK by compound C enhanced the expression of PPARgamma. In conclusion, these data show that AMPK activity is inversely related to adipogenesis in fetal sheep muscle and 3T3-L1 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app