JOURNAL ARTICLE
REVIEW

The next innovation cycle in toxicogenomics: environmental epigenetics

Stella Marie Reamon-Buettner, Vanessa Mutschler, Juergen Borlak
Mutation Research 2008, 659 (1): 158-65
18342568
Toxicogenomics is a field that emerged from the combination of conventional toxicology with functional genomics. In recent years, this field contributed immensely in defining adverse biological effects resulting from environmental stressors, toxins, drugs and chemicals. Through microarray technology, large-scale detection and quantification of mRNA transcripts and of microRNAs, related to alterations in mRNA stability or gene regulation became feasible. Other 'omics' technologies, notably proteomics and metabonomics soon joined in providing further fine tuning in the gathering and interpretation of toxicological data. A field that will inevitably modify the landscape for toxicogenomics is 'epigenetics', a term which refers to heritable changes in gene expression without accompanying alterations in the DNA sequence. These epigenetic changes are brought about by mechanisms such as DNA methylation, histone modifications, and non-coding RNAs in the regulation of gene expression patterns. Epigenetic mechanisms are essential in normal development and differentiation, but these can be misdirected leading to diseases, notably cancer. Indeed, there is now a mounting body of evidence that environmental exposures particularly in early development can induce epigenetic changes, which may be transmitted in subsequent generations or serve as basis of diseases developed later in life. In either way, epigenetic mechanisms will help interpret toxicological data or toxicogenomic approaches to identify epigenetic effects of environmental exposures. Thus, a full understanding of environmental interactions with the genome requires keeping abreast of epigenetic mechanisms, as well as conducting routine analysis of epigenetic modifications as part of the mechanism of actions of environmental exposure. A number of approaches are currently available to study epigenetic modifications in a gene-specific or genome-wide manner. Here we describe our approaches in studying the epigenetic modification of the tumor-suppressor gene Tslc1 (Igsf4a) in lung tumors obtained from transgenic mouse models.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
18342568
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"