JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Effects of single versus combinatorial treatment strategies on beta II-tubulin gene expression in axotomized hamster rubrospinal motoneurons.

PURPOSE: betaII-tubulin, a regeneration-associated gene, is upregulated in injured peripheral neurons, but significantly less so in injured central neurons. Using a hamster dorsal spinal cord injury (SCI), the ability of single versus combinatorial treatment strategies to alter betaII-tubulin mRNA expression in rubrospinal motoneurons (RSMN) was examined. We have shown that systemic testosterone propionate (TP) treatment in combination with peripheral nerve grafting into a SCI site produces a peripheral-like pattern of betaII-tubulin mRNA expression in injured RSMN. In the present study, selected single- and combinatorial-therapy strategies were tested for their ability to promote a sustained upregulation of betaII-tubulin mRNA levels in injured RSMN.

METHODS: Single treatments of olfactory ensheathing cells (OEC), brain-derived neurotrophic factor (BDNF), or Schwann cells (SC) vs combinatorial treatments (SC+TP, OEC+TP, and OEC+BDNF) were administered to hamsters following a dorsal SCI. Quantitative in situ hybridization in conjunction with a betaII-tubulin cDNA probe was accomplished.

RESULTS: All of the single-therapy treatments tested were able to prevent the downregulation of betaII-tubulin mRNA that occurred a week after injury alone, but only BDNF maintained high levels of betaII-tubulin mRNA. In contrast, all combinatorial treatments tested maintained the upregulation of betaII-tubulin mRNA expression in injured RSMN 1 week post-SCI.

CONCLUSIONS: Targeting both intrinsic and extrinsic components of CNS injury can re-program elements of the molecular response of injured central motoneurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app