Add like
Add dislike
Add to saved papers

Identification of DIO2 as a new susceptibility locus for symptomatic osteoarthritis.

Osteoarthritis [MIM 165720] is a common late-onset articular joint disease for which no pharmaceutical intervention is available to attenuate the cartilage degeneration. To identify a new osteoarthritis susceptibility locus, a genome-wide linkage scan and combined linkage association analysis were applied to 179 affected siblings and four trios with generalized osteoarthritis (The GARP study). We tested, for confirmation by association, 1478 subjects who required joint replacement and 734 controls in a UK population. Additional replication was tested in 1582 population-based females from the Rotterdam study that contained 94 cases with defined hip osteoarthritis and in 267 Japanese females with symptomatic hip osteoarthritis and 465 controls. Suggested evidence for linkage in the GARP study was observed on chromosome 14q32.11 (log of odds = 3.03, P = 1.9 x 10(-4)). Genotyping tagging single-nucleotide polymorphisms covering three important candidate genes revealed a common coding variant (rs225014; Thr92Ala) in the iodothyronine-deiodinase enzyme type 2 (D2) gene (DIO2 [MIM 601413]) which significantly explained the linkage signal (P = 0.006). Confirmation and replication by association in the additional osteoarthritis studies indicated a common DIO2 haplotype, exclusively containing the minor allele of rs225014 and common allele of rs12885300, with a combined recessive odds ratio of 1.79, 95% confidence interval (CI) 1.37-2.34 with P = 2.02 x 10(-5) in female cases with advanced/symptomatic hip osteoarthritis. The gene product of this DIO2 converts intracellular pro-hormone-3,3',5,5'-tetraiodothyronine (T4) into the active thyroid hormone 3,3',5-triiodothyronine (T3) thereby regulating intracellular levels of active T3 in target tissues such as the growth plate. Our results indicate a new susceptibility gene (DIO2) conferring risk to osteoarthritis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app