JOURNAL ARTICLE

Angiotensin II receptor blocker inhibits tumour necrosis factor-alpha-induced cell damage in human renal proximal tubular epithelial cells

Toru Kagawa, Toshihiro Takao, Taro Horino, Reiko Matsumoto, Kousuke Inoue, Tatsuhito Morita, Kozo Hashimoto
Nephrology 2008, 13 (4): 309-15
18331441

AIM: We investigated the effect of angiotensin II (AII) type 1 (AT1) and angiotensin II type 2 (AT2) receptor blockers on tumour necrosis factor alpha (TNF-alpha)-induced cell damage in human renal proximal tubular epithelial cells (RPTEC).

METHODS: The lactate dehydrogenase (LDH) and N-acetyl-beta-glucosaminidase (NAG) release into the medium after TNF-alpha treatment in RPTEC were determined using modified commercial procedures. In addition, the levels of caspase 3/7 activity in RPTEC were measured after TNF-alpha treatment with AlphaTau1 or AT2 receptor blockers. Finally we investigated the change of p22phox protein levels after TNF-alpha with AlphaTau1 or AT2 receptor blockers in RPTEC.

RESULTS: Tumour necrosis factor alpha (10(-8) mol/L) significantly increased LDH and NAG release into the medium from RPTEC. AlphaTau1 receptor blockers, olmesartan and valsartan (10(-9)-10(-6) mol/L) showed a significant reduction on TNF-alpha-induced LDH and NAG release in RPTEC. AT2 receptor blocker, PD123319 (10(-7)-10(-5) mol/L) also decreased TNF-alpha-induced LDH and NAG release in RPTEC. Blockade of both AlphaTau1 and AT2 receptor indicated additional reduction on TNF-alpha-induced LDH and NAG release. TNF-alpha (10(-8) mol/L) treatment showed small but significant increases of caspase 3/7 activity in RPTEC, and AT1 and AT2 receptor blockers (10(-8) mol/L) comparably decreased TNF-alpha-induced caspase 3/7 activity. Significant increases of p22phox protein levels were observed in TNF-alpha-treated group in RPTEC. However, only AlphaTau1 (10(-8) mol/L) but not AT2 (10(-5) mol/L) receptor blocker significantly decreased TNF-alpha-induced p22phox protein levels.

CONCLUSION: The present study demonstrates that TNF-alpha induces renal tubular cell damage in RPTEC and AT1/AT2 receptor blockers showed cytoprotective effects probably via at least partly different mechanism.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
18331441
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"