JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Beating-heart patch closure of muscular ventricular septal defects under real-time three-dimensional echocardiographic guidance: a preclinical study.
OBJECTIVES: Safe and effective device closure of ventricular septal defects remains a challenge. We have developed a transcardiac approach to close ventricular septal defects using a patch delivery and fixation system that can be secured under real-time three-dimensional echocardiographic guidance.
METHODS: In Yorkshire pigs (n = 8) a coring device was introduced into the left ventricle through a purse-string suture placed on the left ventricular apex, and a muscular ventricular septal defect was created. The patch deployment device containing a 20-mm polyester patch was advanced toward the ventricular septal defect through another purse-string suture on the left ventricular apex, and the patch was deployed under real-time three-dimensional echocardiographic guidance. The anchor delivery device was then introduced into the left ventricle through the first purse-string suture. Nitinol anchors to attach the patch around the ventricular septal defect were deployed under real-time three-dimensional echocardiographic guidance. After patch attachment, residual shunts were sought by means of two-dimensional and three-dimensional color Doppler echocardiography. The heart was then excised, and the septum with the patch was inspected.
RESULTS: A ventricular septal defect was created in the midventricular (n = 4), anterior (n = 2), and apical (n = 2) septum. The mean size was 9.8 mm (8.2-12.0 mm), as determined by means of two-dimensional color Doppler scanning. The ventricular septal defects were completely closed in 7 animals. In one a 2.4-mm residual shunt was identified. No anatomic structures were compromised.
CONCLUSIONS: Beating-heart perventricular muscular ventricular septal defect closure without cardiopulmonary bypass can be successfully achieved by using a catheter-based patch delivery and fixation system under real-time three-dimensional echocardiographic guidance. This approach might be a better alternative to cardiac surgery or transcatheter device closure.
METHODS: In Yorkshire pigs (n = 8) a coring device was introduced into the left ventricle through a purse-string suture placed on the left ventricular apex, and a muscular ventricular septal defect was created. The patch deployment device containing a 20-mm polyester patch was advanced toward the ventricular septal defect through another purse-string suture on the left ventricular apex, and the patch was deployed under real-time three-dimensional echocardiographic guidance. The anchor delivery device was then introduced into the left ventricle through the first purse-string suture. Nitinol anchors to attach the patch around the ventricular septal defect were deployed under real-time three-dimensional echocardiographic guidance. After patch attachment, residual shunts were sought by means of two-dimensional and three-dimensional color Doppler echocardiography. The heart was then excised, and the septum with the patch was inspected.
RESULTS: A ventricular septal defect was created in the midventricular (n = 4), anterior (n = 2), and apical (n = 2) septum. The mean size was 9.8 mm (8.2-12.0 mm), as determined by means of two-dimensional color Doppler scanning. The ventricular septal defects were completely closed in 7 animals. In one a 2.4-mm residual shunt was identified. No anatomic structures were compromised.
CONCLUSIONS: Beating-heart perventricular muscular ventricular septal defect closure without cardiopulmonary bypass can be successfully achieved by using a catheter-based patch delivery and fixation system under real-time three-dimensional echocardiographic guidance. This approach might be a better alternative to cardiac surgery or transcatheter device closure.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app