JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Selection of housekeeping genes for gene expression studies in larvae from flatfish using real-time PCR.

BACKGROUND: Flatfish metamorphosis involves major physiological and morphological changes. Due to its importance in aquaculture and as a model for developmental studies, some gene expression studies have focused on the understanding of this process using quantitative real-time PCR (qRT-PCR) technique. Therefore, adequate reference genes for accurate normalization are required.

RESULTS: The stability of 12 potential reference genes was examined during larval development in Senegalese sole (Solea senegalensis) and Atlantic halibut (Hippoglossus hippoglossus) to determine the most suitable genes for qRT-PCR analysis. Transcription levels of genes encoding beta-Actin (ACTB), glyceraldehyde-3P-dehydrogenase (GAPDH), annexin A2 (ANXA2), glutathione S-transferase (GST), ornithine decarboxylase (ODC), hypoxanthine phosphoribosyltransferase (HPRT1), ubiquitin (UBQ), elongation factor 1 alpha (eEF1A1), 18S ribosomal RNA, and the ribosomal proteins S4 (RPS4) and L13a (RPL13a) were quantitated. Two paralogous genes for ACTB were analyzed in each of both flatfish species. In addition, two paralogous genes for GAPDH were studied in Senegalese sole. RPL13a represented non-orthologous genes between both flatfish species. GeNorm and NormFinder analyses for expression stability revealed RPS4, UBQ and eEF1A1 as the most stable genes in Senegalese sole, Atlantic halibut and in a combined analysis. In all cases, paralogous genes exhibited differences in expression stability.

CONCLUSION: This work suggests RPS4, UBQ, and eEF1A1 genes as useful reference genes for accurate normalization in qRT-PCR studies in Senegalese sole and Atlantic halibut larvae. The congruent results between both species in spite of the drastic differences in larval development suggest that selected housekeeping genes (HKGs) could be useful in other flatfish species. However, the finding of paralogous gene copies differentially expressed during development in some HKGs underscores the necessity to identify orthologous genes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app