Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

First-principle time-dependent study of magnesium-containing porphyrin-like compounds potentially useful for their application in photodynamic therapy.

Geometry optimization, singlet-triplet energy gap, and electronic absorption spectra calculation of complexes formed by Mg ion and porphyrin, porphyrazin, chlorine, bacteriochlorine, texaphyrin, phthalocyanine, naphthalocyanine, and anthracocyanine ligands have been carried out to elucidate their potentiality as photosensitizers in photodynamic therapy (PDT). The study has been performed employing the density functional theory (DFT) and its time-dependent approach (TDDFT) in conjunction with the PBE0 exchange-correlation functional and extended TZVP all-electron basis sets. The solvent effects have been evaluated throughout the polarizable continuum model (PCM). Results show that, following the properties requirement for the drugs used in PDT, the Mg-Tex and Mg-Pc complexes are reliable candidates for their use as photosensitizers in this medical therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app