Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Deletion of caveolin-1 protects against oxidative lung injury via up-regulation of heme oxygenase-1.

Acute lung injury (ALI) is a major cause of morbidity and mortality in critically ill patients. Hyperoxia causes lung injury in animals and humans, and is an established model of ALI. Caveolin-1, a major constituent of caveolae, regulates numerous biological processes, including cell death and proliferation. Here we demonstrate that caveolin-1-null mice (cav-1(-/-)) were resistant to hyperoxia-induced death and lung injury. Cav-1(-/-) mice sustained reduced lung injury after hyperoxia as determined by protein levels in bronchoalveolar lavage fluid and histologic analysis. Furthermore, cav-1(-/-) fibroblasts and endothelial cells and cav-1 knockdown epithelial cells resisted hyperoxia-induced cell death in vitro. Basal and inducible expression of the stress protein heme oxygenase-1 (HO-1) were markedly elevated in lung tissue or fibroblasts from cav-1(-/-) mice. Hyperoxia induced the physical interaction between cav-1 and HO-1 in fibroblasts assessed by co-immunoprecipitation studies, which resulted in attenuation of HO activity. Inhibition of HO activity with tin protoporphyrin-IX abolished the survival benefits of cav-1(-/-) cells and cav-1(-/-) mice exposed to hyperoxia. The cav-1(-/-) mice displayed elevated phospho-p38 mitogen-activated protein kinase (MAPK) and p38beta expression in lung tissue/cells under basal conditions and during hyperoxia. Treatment with SB202190, an inhibitor of p38 MAPK, decreased hyperoxia-inducible HO-1 expression in wild-type and cav-1(-/-) fibroblasts. Taken together, our data demonstrated that cav-1 deletion protects against hyperoxia-induced lung injury, involving in part the modulation of the HO-1-cav-1 interaction, and the enhanced induction of HO-1 through a p38 MAPK-mediated pathway. These studies identify caveolin-1 as a novel component involved in hyperoxia-induced lung injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app