JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MSFTZ, a flavanone derivative, induces human hepatoma cell apoptosis via a reactive oxygen species- and caspase-dependent mitochondrial pathway.

Hepatocellular carcinoma (HCC) is the most common malignancy of the liver. It is unfortunate that HCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of HCCs. We now report that (+/-)-(3aRS,4SR)-2-(2-chloro-4-methylsulfonylphenyl)-4'-chloro-3alpha,4-diethoxy-flavane[4,3-d]-D1,9b-1,2,3-thiadiazoline (MSFTZ), a synthesized flavanone derivative, induced growth arrest and apoptosis of HCCs both in vitro and in vivo. MSFTZ induced a time- and dose-dependent increase in HCC apoptosis through caspase-3 activation and poly(ADP-ribose) polymerase-1 cleavage. Activation of caspase-9 induced by MSFTZ suggested that MSFTZ-induced signaling was mediated through a mitochondrial death pathway. In addition, we observed an elevation of reactive oxygen species (ROS) and a consequent loss of mitochondrial membrane potential, further suggesting that MSFTZ-induced death signaling was mediated through a mitochondrial oxygen stress pathway. These events were associated with a decrease and increase in Bcl-2 and Bax expression, respectively, as well as phosphorylation of mitogen-activated protein kinase (MAPK) and activation of p53-MDM2 pathway. However, the antioxidant N-acetylcysteine opposed MSFTZ-mediated mitochondrial dysfunction, caspase activation, Bcl-2/Bax modulation, and apoptosis, supporting the role of ROS in the apoptotic process. We were surprised that we failed to observe the protective effect of N-acetylcysteine against MSFTZ-induced MAPK activation. Furthermore, MSFTZ had an antitumor effect in vivo by 34.8 to 78.7% reduction of tumor size in SMMC-7721-xenografted nude mice. We conclude that MSFTZ induces HCC cell apoptosis both in vivo and in vitro via caspase- and ROS-dependent mitochondrial pathway. In addition, MSFTZ has potential as a novel therapeutic agent for the treatment of HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app