JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics.

Journal of Immunology 2008 March 16
TLR ligands are potent adjuvants and promote Th1 responses to coadministered Ags by inducing innate IL-12 production. We found that TLR ligands also promote the induction of IL-10-secreting regulatory T (Treg) cells through p38 MAPK-induced IL-10 production by dendritic cells (DC). Inhibition of p38 suppressed TLR-induced IL-10 and PGE(2) and enhanced IL-12 production in DC. Incubation of Ag-pulsed CpG-stimulated DC with a p38 inhibitor suppressed their ability to generate Treg cells, while enhancing induction of Th1 cells. In addition, inhibition of p38 enhanced the antitumor therapeutic efficacy of DC pulsed with Ag and CpG and this was associated with an enhanced frequency of IFN-gamma-secreting T cells and a reduction of Foxp3(+) Treg cells infiltrating the tumors. Furthermore, addition of a p38 inhibitor to a pertussis vaccine formulated with CpG enhanced its protective efficacy in a murine respiratory challenge model. These data demonstrate that the adjuvant activity of TLR agonists is compromised by coinduction of Treg cells, but this can be overcome by inhibiting p38 signaling in DC. Our findings suggest that p38 is an important therapeutic target and provides a mechanism to enhance the efficacy of TLR agonists as vaccine adjuvants and cancer immunotherapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app