Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins

Carsten A Wagner, Dominique Loffing-Cueni, Qingshang Yan, Nicole Schulz, Panagiotis Fakitsas, Monique Carrel, Tong Wang, Francois Verrey, John P Geibel, Gerhard Giebisch, Steven C Hebert, Johannes Loffing
American Journal of Physiology. Renal Physiology 2008, 294 (6): F1373-80
Bartter's syndrome represents a group of hereditary salt- and water-losing renal tubulopathies caused by loss-of-function mutations in proteins mediating or regulating salt transport in the thick ascending limb (TAL) of Henle's loop. Mutations in the ROMK channel cause type II antenatal Bartter's syndrome that presents with maternal polyhydramnios and postnatal life-threatening volume depletion. We have developed a colony of Romk null mice showing a Bartter-like phenotype and with increased survival to adulthood, suggesting the activation of compensatory mechanisms. To test the hypothesis that upregulation of Na(+)-transporting proteins in segments distal to the TAL contributes to compensation, we studied expression of salt-transporting proteins in ROMK-deficient (Romk(-/-)) mice. Plasma aldosterone was 40% higher and urinary PGE(2) excretion was 1.5-fold higher in Romk(-/-) compared with wild-type littermates. Semiquantitative immunoblotting of kidney homogenates revealed decreased abundances of proximal tubule Na(+)/H(+) exchanger (NHE3) and Na(+)-P(i) cotransporter (NaPi-IIa) and TAL-specific Na(+)-K(+)-2Cl(-)-cotransporter (NKCC2/BSC1) in Romk(-/-) mice, while the distal convoluted tubule (DCT)-specific Na(+)-Cl(-) cotransporter (NCC/TSC) was markedly increased. The abundance of the alpha-,beta-, and gamma-subunits of the epithelial Na(+) channel (ENaC) was slightly increased, although only differences for gamma-ENaC reached statistical significance. Morphometry revealed a fourfold increase in the fractional volume of DCT but not of connecting tubule (CNT) and collecting duct (CCD). Consistently, CNT and CD of Romk(-/-) mice revealed no apparent increase in the luminal abundance of the ENaC compared with those of wild-type mice. These data suggest that the loss of ROMK-dependent Na(+) absorption in the TAL is compensated predominately by upregulation of Na(+) transport in downstream DCT cells. These adaptive changes in Romk(-/-) mice may help to limit renal Na(+) loss, and thereby, contribute to survival of these mice.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"