Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ubc9 promotes the stability of Smad4 and the nuclear accumulation of Smad1 in osteoblast-like Saos-2 cells.

Bone 2008 May
Bone morphogenetic proteins (BMPs) play important roles in osteoblast differentiation and maturation. In mammals, the BMP-induced receptor-regulated Smads form complexes with Smad4. These complexes translocate and accumulate within the nucleus, where they regulate the transcription of various target genes. However, the function of Smad4 remains unclear. We performed a yeast two-hybrid screen using Smad4 as bait and a cDNA library derived from human bone marrow to identify the proteins interacting with Smad4. Two full-length cDNA clones for Ubc9 were identified, and the potential functions of Ubc9 were investigated. To determine the role of Ubc9 in the BMP signaling pathway, the endogenous transcription of Ubc9 in the human osteoblast cell line Saos-2 was silenced using siRNA. The expression of BMP-induced transcription factors, including Runx2, Dlx5, Msx2, and Osterix, was examined using real-time reverse transcription polymerase chain reaction (qRT-PCR), and the protein expression of Smad4, Smad1, phosphorylated Smad1, and BMP type I receptors was determined by Western blotting. The subcellular localization of Smad1 and Smad4 was observed using immunofluorescence staining after Ubc9 silencing. To determine whether Smad4 is sumoylated in vitro, recombinant Smad4 was purified and sumoylated Smad4 was visualized using Western blotting. The mRNA expression of various transcription factors was markedly inhibited after Ubc9 silencing. The protein levels of Smad4 and phosphorylated Smad1 decreased in a dose-dependent manner according to the amount of siRNA applied. Gene silencing also decreased the nuclear accumulation of Smad1 and Smad4. The sumoylation assay showed that sumoylated Smad4 is present and dependent on Ubc9 in vitro, which was confirmed by pretreatment with Senp2, a SUMO-protease. These results suggest that Ubc9 promotes the stability of sumoylated Smad4. Furthermore, the expression of key transcription factors, phosphorylated Smad1 protein, and the nuclear accumulation of Smad1 and Smad4 are inhibited by Ubc9 silencing. Thus, Ubc9 plays an important role in the up-regulation of the BMP signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app