Journal Article
Review
Add like
Add dislike
Add to saved papers

Assessment of myocardial viability in ischemic heart disease by cardiac magnetic resonance imaging.

Assessment of myocardial viability aims at differentiating between viable and non-viable myocardium. The proof of dysfunctional but viable myocardium is crucial to predict outcome of revascularization after acute (AMI) and chronic myocardial infarction (CMI). Cardiac magnetic resonance imaging (CMRI) offers different options to detect viable myocardium: Measurements of end-diastolic wall thickness by cine-CMRI can be used to depict chronically scarred myocardium, but fails to detect acute myocardial necrosis. Low-dose dobutamine stimulation (LDDS) cine-CMRI analyses the contractile reserve of dysfunctional but viable myocardium under pharmacologic stimulus to identify viable myocardium in AMI and CMI with high specificity. Sensitivity of LDDS cine-CMRI is superior to LDDS echocardiography but reduced in patients with severely impaired left ventricular (LV) function. The delayed-enhancement (DE) technique directly visualises non-viable myocardium due to an altered contrast-media distribution in necrotic and fibrotic tissue. DE-CMRI identifies non-viable myocardium with high spatial resolution independently from LV function. The transmural extent of contrast enhancement in DE-CMRI is used to predict functional recovery after revascularization in AMI and CMI. Furthermore, the amount and pattern of contrast enhancement in DE-CMRI provide important prognostic information in both entities. Recent studies demonstrated the superiority of DE-CMRI compared to single photon emission tomography (SPECT) and positron emission tomography (PET) to assess myocardial viability. Therefore, DE-CMRI is currently recognised as the standard of reference for assessment of myocardial viability. The technical background, clinical application and accuracy of the different CMRI techniques to assess myocardial viability in AMI and CMI are discussed in this work.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app