Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Activation of liver X receptor sensitizes mice to gallbladder cholesterol crystallization.

UNLABELLED: Gallstone disease is a hepatobiliary disorder due to biochemical imbalances in the gallbladder bile. In this report, we show that activation of nuclear receptor liver X receptor (LXR) sensitized mice to lithogenic diet-induced gallbladder cholesterol crystallization, which was associated with dysregulation of several hepatic transporters that efflux cholesterol, phospholipids, and bile salts. The combined effect of increased biliary concentrations of cholesterol and phospholipids and decreased biliary concentrations of bile salts in LXR-activated mice led to an increased cholesterol saturation index and the formation of cholesterol crystals. Interestingly, the lithogenic effect of LXR was completely abolished in the low-density lipoprotein receptor (Ldlr) null background or when the mice were treated with Ezetimibe, a cholesterol-lowering drug that blocks intestinal dietary cholesterol absorption. These results suggest that LDLR-mediated hepatic cholesterol uptake and intestinal cholesterol absorption play an essential role in LXR-promoted lithogenesis.

CONCLUSION: The current study has revealed a novel lithogenic role of LXR as well as a functional interplay between LXR and LDLR in gallbladder cholesterol crystallization and possibly cholesterol gallstone disease (CGD). We propose that LXR is a lithogenic factor and that the LXR transgenic mice may offer a convenient CGD model to develop therapeutic interventions for this disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app