JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Selective inhibition of histone deacetylase 2 silences progesterone receptor-mediated signaling.

Cancer Research 2008 March 2
Several histone deacetylases (HDAC) are involved in estrogen receptor (ER)-mediated gene transactivation, and HDAC inhibitors have been reported to restore sensitivity to antihormonal therapy. The modulation of ER is the most promising approach to ER-expressing breast cancers. Recent studies further suggest a critical role of the progesterone receptor (PR) on ER signaling. Although HDAC inhibitors modulate ER, little is known about their effects on PR. We evaluated the roles of specific HDAC isoenzymes and their inhibition on both ER and PR signaling and their importance in response to endocrine therapy. The roles of individual HDAC isoenzymes on ER and PR expression and their functions were evaluated by depletion of select HDAC enzymes using siRNA or pharmacologic inhibition. Cotreatment of breast cancer cell lines with HDAC inhibitors and the antiestrogen, tamoxifen, resulted in synergistic antitumor activity with simultaneous depletion of both ER and PR. Selective inhibition of HDAC2, but not HDAC1 or HDAC6, was sufficient to potentiate tamoxifen-induced apoptosis in ER/PR-positive cells. Depletion of HDAC1 and HDAC6 was associated with down-regulation of ER but not PR. Only the selective depletion of HDAC2 siRNA down-regulated both ER and PR expression, and was sufficient to potentiate tamoxifen. Selective depletion of HDAC2 resulted in simultaneous depletion of ER and PR, and potentiated the effects of antihormonal therapy in ER-positive cells. A more effective pharmacologic inhibition of HDAC2 and evaluation of HDAC2 and PR as therapeutic targets or as predictive markers in hormonal therapy may be considered when combining HDAC inhibitors and hormonal therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app