JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Expression of HER2 and estrogen receptor alpha depends upon nuclear localization of Y-box binding protein-1 in human breast cancers.

Cancer Research 2008 March 2
In our present study, we examined whether nuclear localization of Y-box binding protein-1 (YB-1) is associated with the expression of epidermal growth factor receptors (EGFR), hormone receptors, and other molecules affecting breast cancer prognosis. The expression of nuclear YB-1, clinicopathologic findings, and molecular markers [EGFR, HER2, estrogen receptor (ER)alpha, ER beta, progesterone receptor, chemokine (C-X-C motif) receptor 4 (CXCR4), phosphorylated Akt, and major vault protein/lung resistance protein] were immunohistochemically analyzed. The association of the expression of nuclear YB-1 and the molecular markers was examined in breast cancer cell lines using microarrays, quantitative real-time PCR, and Western blot analyses. Knockdown of YB-1 with siRNA significantly reduced EGFR, HER2, and ER alpha expression in ER alpha-positive, but not ER alpha-negative, breast cancer cell lines. Nuclear YB-1 expression was positively correlated with HER2 (P = 0.0153) and negatively correlated with ER alpha (P = 0.0122) and CXCR4 (P = 0.0166) in human breast cancer clinical specimens but was not correlated with EGFR expression. Nuclear YB-1 expression was an independent prognostic factor for overall (P = 0.0139) and progression-free (P = 0.0280) survival. In conclusion, nuclear YB-1 expression might be essential for the acquisition of malignant characteristics via HER2-Akt-dependent pathways in breast cancer patients. The nuclear localization of YB-1 could be an important therapeutic target against not only multidrug resistance but also tumor growth dependent on HER2 and ER alpha.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app