JOURNAL ARTICLE

Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent

Yueming Ren, Xizhu Wei, Milin Zhang
Journal of Hazardous Materials 2008 October 1, 158 (1): 14-22
18313215
A novel magnetic Cu(II) ion imprinted composite adsorbent (Cu(II)-MICA) was synthesized, characterized and applied for the selective removal Cu(II) from aqueous solution in the batch system. The adsorption-desorption and selectivity characteristics were investigated. The maximum adsorption occurred at pH 5-6. The equilibrium time was 6.0h, and a pseudo-second-order model could best describe adsorption kinetics. The adsorption equilibrium data fit Langmuir isotherm equation well with a maximum adsorption capacity of 46.25mg/g and Langmuir adsorption equilibrium constant of 0.0956L/mg at 298K. Thermodynamic parameters analysis predicted an exothermic nature of adsorption and a spontaneous and favourable process that could be mainly governed by physisorption mechanism. The relative selectivity coefficients of Cu(II)-MICA for Cu(II)/Zn(II) and Cu(II)/Ni(II) were 2.31, 2.66 times greater than the magnetic non-imprinted composite adsorbent (MNICA). Results suggested that Cu(II)-MICA was a material of efficient, low-cost, convenient separation under magnetic field and could be reused five times with about 14% regeneration loss.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
18313215
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"