Moderate hypothermia increases the chance of spiral wave collision in favor of self-termination of ventricular tachycardia/fibrillation

Masahide Harada, Haruo Honjo, Masatoshi Yamazaki, Harumichi Nakagawa, Yuko S Ishiguro, Yusuke Okuno, Takashi Ashihara, Ichiro Sakuma, Kaichiro Kamiya, Itsuo Kodama
American Journal of Physiology. Heart and Circulatory Physiology 2008, 294 (4): H1896-905
In cardiac arrest due to ventricular fibrillation (VF), moderate hypothermia (MH, 33 degrees C) has been shown to improve defibrillation success compared with normothermia (NR, 37 degrees C) and severe hypothermia (SH, 30 degrees C). The underlying mechanisms remain unclear. We hypothesized that MH might prevent reentrant excitations rotating around functional obstacles (rotors) that are responsible for the genesis of VF. In two-dimensional Langendorff-perfused rabbit hearts prepared by cryoablation (n = 13), action potential signals were recorded by a high-resolution optical mapping system. During basic stimulation (2.5-5.0 Hz), MH and SH caused significant prolongation of action potential duration and significant reduction of conduction velocity. Wavelength was unchanged at MH, whereas it was shortened significantly at SH at higher stimulation frequencies (4.0-5.0 Hz). The duration of direct current stimulation-induced ventricular tachycardia (VT)/VF was reduced dramatically at MH compared with NR and SH. The spiral wave (SW) excitations documented during VT at NR were by and large organized, whereas those during VT/VF at MH and SH were characterized by disorganization with frequent breakup. Phase maps during VT/VF at MH showed a higher incidence of SW collision (mutual annihilation or exit from the anatomical boundaries), which caused a temporal disappearance of phase singularity points (PS-0), compared with that at NR and SH. There was an inverse relation between PS-0 period in the observation area and VT/VF duration. MH data points were located in a longer PS-0 period and a shorter VT/VF duration zone compared with SH. MH causes a modification of SW dynamics, leading to an increase in the chance of SW collision in favor of self-termination of VT/VF.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"