Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Smad4-dependent TGF-beta signaling suppresses RON receptor tyrosine kinase-dependent motility and invasion of pancreatic cancer cells.

Transforming growth factorbeta (TGF-beta) signals through Smad-dependent and Smad-independent pathways. However, Smad signaling is altered by allelic deletion or intragenic mutation of the Smad4 gene in more than half of pancreatic ductal adenocarcinomas. We show here that loss of Smad4-dependent signaling leads to aberrant expression of RON, a phosphotyrosine kinase receptor, and that signaling by RON cooperates with Smad4-independent TGF-beta signaling to promote cell motility and invasion. Restoring Smad4 expression in a pancreatic ductal adenocarcinoma cell line that is deficient in Smad4 repressed RON expression. Conversely, small interference RNA knock down of Smad4 or blocking TGF-beta signaling with a TGF-beta type I receptor kinase inhibitor in Smad4-intact cell lines induced RON expression. TGF-beta-induced motility and invasion were inhibited in cells that express Smad4 and that have low levels of RON compared with isogenically matched cells that were deficient in Smad4. Furthermore, knocking down RON expression in Smad4-deficient cells suppressed TGF-beta-mediated motility and invasion. We further determined that Smad4-dependent signaling regulated RON expression at the transcriptional level by real-time reverse transcription PCR and RON promoter luciferase reporter assays. Functional inactivation by site-directed mutations of two Smad binding sites on the RON promoter inhibited TGF-beta-mediated repression of RON promoter activity. These studies indicate that loss of Smad4 contributes to aberrant RON expression and that cross-talk of Smad4-independent TGF-beta signaling and the RON pathway promotes an invasive phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app