JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Impaired skeletal muscle substrate oxidation in glucose-intolerant men improves after weight loss.

Obesity 2008 May
OBJECTIVE: An impaired fatty acid handling in skeletal muscle may be involved in the development of insulin resistance and diabetes mellitus type 2 (DM2). We investigated muscle fatty acid metabolism in glucose-intolerant men (impaired glucose tolerance (IGT)), a prediabetic state, relative to BMI-matched control men (normal glucose tolerance (NGT)) during fasting and after a meal, because most people in the western society are in the fed state most of the day.

METHODS AND PROCEDURES: Skeletal muscle free fatty acid (FFA) uptake and oxidation were studied using the stable isotope tracer [2,2-(2)H]-palmitate and muscle indirect calorimetry in the forearm model during fasting and after a mixed meal (33 energy % (E%) carbohydrates, 61 E% fat). Intramyocellular triglycerides (IMTGs) were monitored with 1H-magnetic resonance spectroscopy. IGT men were re-examined after weight loss (-15% of body weight (BW)).

RESULTS: The postprandial increase in forearm muscle respiratory quotient (RQ) was blunted in IGT compared to NGT, but improved after weight loss. Weight loss also improved fasting-fat oxidation and tended to decrease IMTGs (P=0.08). No differences were found in fasting and postprandial forearm muscle fatty acid uptake between NGT and IGT, or in IGT before and after weight loss.

DISCUSSION: The ability to switch from fat oxidation to carbohydrate oxidation after a meal is already impaired in the prediabetic state, suggesting this may be an early factor in the development toward DM2. This impaired ability to regulate fat oxidation during fasting and after a meal (impaired metabolic flexibility) can be (partly) reversed by weight loss.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app