Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Site-specific protein modification on living cells catalyzed by Sortase.

The use of enzymes is a promising approach for site-specific protein modification on living cells owing to their substrate specificity. Herein we describe a general strategy for the site-specific modification of cell surface proteins with synthetic molecules by using Sortase, a transpeptidase from Staphylococcus aureus. The short peptide tag LPETGG is genetically introduced to the C terminus of the target protein, expressed on the cell surface. Subsequent addition of Sortase and an N-terminal triglycine-containing probe results in the site-specific labeling of the tagged protein. We were successful in the C-terminal-specific labeling of osteoclast differentiation factor (ODF) with a biotin- or fluorophore-containing short peptide on the living cell surface. The labeling reaction occurred efficiently in serum-containing medium, as well as serum-free medium or PBS. The labeled products were detected after incubation for 5 min. In addition, site-specific protein-protein conjugation was successfully demonstrated on a living cell surface by the Sortase-catalyzed reaction. This strategy provides a powerful tool for cell biology and cell surface engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app