JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanopaticle labeled DNA as probe onto titanium dioxide electrode.

A photoelectrochemical method was proposed to detect DNA hybridization using Au nanoparticle modified DNA as one probe on TiO2 substrate, in which the TiO2 substrate was used not only as DNA anchors but also as the signal transducers. Hybridization between the probe and the target DNA oligonucleotides was confirmed by the decreased photocurrent of the TiO2 electrode. Compared with non-label probe, Au nanoparticles enhanced the photocurrent shifts after the hybridization. The photocurrent decreased with increasing the concentration of target DNA, indicating that this method could be used for quantitative measurements, and the discrimination of the complementary from mismatched DNA. Furthermore, the hybridization binding constant was obtained and photocurrent generation mechanism was discussed. The major advantages of this photochemical method are speed, simplicity and excellent specificity. This method provides a platform for studying a wide variety of biological processes using photoelectrochemical method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app