Add like
Add dislike
Add to saved papers

Sequestration of nickel from aqueous solution onto activated carbon prepared from Parthenium hysterophorus L.

In the present study, nickel removal efficiency of sulphuric acid-treated Parthenium carbon (SWC) from simulated wastewater has been investigated. Batch mode adsorption experiments have been conducted by varying pH, nickel concentration, adsorbent dose and contact time. Ni(II) removal was pH-dependent and found to be maximum at pH 5.0. The maximum removal of Ni(II) was achieved within 4h after the start of every experiment. The equilibrium adsorption data were fitted to Freundlich and Langmuir adsorption isotherm models to evaluate the model parameters. Both models represented the experimental data satisfactorily. The monolayer adsorption capacities of SWC as obtained from Langmuir isotherm was found to be 17.24 mg/g. The Lagergren first-order model was less applicable than pseudo-second-order reaction model. The adsorbent was also characterized including infrared spectroscopy and scanning electron microscopy. The FT-IR study indicated the presence of OH, CH, CO and CO groups in the adsorbent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app