JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Hesr1 and Hesr2 may act as early effectors of Notch signaling in the developing cochlea.

In cochlear development, the Notch signaling pathway is required for both the early prosensory phase and a later lateral inhibition phase. While it is known that Hes genes are important downstream mediators of Notch function in lateral inhibition, it is not known what genes function as mediators of the early prosensory function of Notch. We report that two members of the Hes-related gene family, Hesr1 and Hesr2, are expressed in the developing cochlea at a time and place that makes them excellent candidates as downstream mediators of Notch during prosensory specification. We also show that treatment of cochlear explant cultures at the time of prosensory specification with a small-molecule inhibitor of the Notch pathway mimics the results of conditional Jag1 deletion. This treatment also reduces Hesr1 and Hesr2 expression by as much as 80%. These results support the hypothesis that Hesr1 and Hesr2 are the downstream mediators of the prosensory function of Notch in early cochlear development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app