JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Agonist-evoked calcium entry in vascular smooth muscle cells requires IP3 receptor-mediated activation of TRPC1.

Transient receptor potential canonical (TRPC) proteins have been proposed to function as plasma membrane Ca2+ channels activated by store depletion and/or by receptor stimulation. However, their role in the increase in cytosolic Ca2+ activated by contractile agonists in vascular smooth muscle is not yet elucidated. The present study was designed to investigate the functional and molecular properties of the Ca2+ entry pathway activated by endothelin-1 in primary cultured aortic smooth muscle cells. Measurement of the Ca2+ signal in fura-2-loaded cells allowed to characterize endothelin-1-evoked Ca2+ entry, which was resistant to dihydropyridine, and was blocked by 2-aminoethoxydiphenylborate (2-APB) and micromolar concentration of Gd3+. It was not activated by store depletion, but was inhibited by the endothelin ETA receptor antagonist BQ-123, and by heparin. On the opposite, thapsigargin-induced store depletion activated a Ca2+ entry pathway that was not affected by 2-APB, BQ-123 or heparin, and was less sensitive to Gd3+ than was endothelin-1-evoked Ca2+ entry. Investigation of the gene expression of TRPC isoforms by real-time RT-PCR revealed that TRPC1 was the most abundant. In cells transfected with TRPC1 small interfering RNA sequence, TRPC1 mRNA and protein expression were decreased by 72+/-3% and 86+/-2%, respectively, while TRPC6 expression was unaffected. In TRPC1 knockdown cells, both endothelin-1-evoked Ca2+ entry and store-operated Ca2+ entry evoked by thapsigargin were blunted. These results indicate that in aortic smooth muscle cells, TRPC1 is not only involved in Ca2+ entry activated by store depletion but also in receptor-operated Ca2+ entry, which requires inositol (1,4,5) triphosphate receptor activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app