JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Indian hedgehog promotes the migration of rat activated pancreatic stellate cells by increasing membrane type-1 matrix metalloproteinase on the plasma membrane.

Indian hedgehog (Ihh) is a member of hedgehog peptides family that exerts diverse effects on multiple cellular functions. Since Ihh expression is elevated in the pancreas of chronic pancreatitis patients, Ihh has been assumed to participate in the chronic pancreatic injury, especially in pancreatic fibrosis. However, its function in pancreatic fibrosis is still unknown. We thus examined Ihh effects on rat activated pancreatic stellate cells (PSCs) that play a central role in pancreatic fibrosis. Activated PSCs express both patched-1 and smoothened that are essential components of hedgehog receptor system. Ihh did not alter the PSC expression of collagen-1 or alpha-smooth muscle actin, a parameter of PSC transformation, or did not change PSC proliferation. However, Ihh enhanced PSC migration in both chemotactic and chemokinetic manners. Furthermore, Ihh increased the amount of membrane-type 1 matrix metalloproteinase (MT1-MMP) and altered its localization on the plasma membrane, which plays a stimulatory role in cellular migration. In addition, tissue inhibitor of metalloproteinase-2 (TIMP-2) attenuated Ihh-stimulated PSC migration. Since most hedgehog intracellular signals are mediated by Gli-1 transcription factor, we investigated its contribution to Ihh-enhancement of PSC migration. Ihh induced Gli-1 nuclear accumulation in PSCs, indicating that Ihh stimulates Gli-1-dependent signaling pathway in PSCs. Unexpectedly, however, adenovirus-mediated Gli-1 overexpression blocked the Ihh enhancement of both MT1-MMP localization on the plasma membrane and PSC migration. Furthermore, reduction of Gli-1 expression with RNA interference augmented Ihh-stimulated PSC migration. These data indicate that Ihh promotes PSC migration by enhancing MT1-MMP localization on the plasma membrane but is negatively regulated by Gli-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app