Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of advanced glycation end products on the expression of COX-2, PGE2 and NO in human osteoarthritic chondrocytes.

Rheumatology 2008 April
OBJECTIVE: Advanced glycation end products (AGE) accumulate in articular cartilage with age. We investigated the effects of AGE in primary-cultured human OA chondrocytes.

METHODS: Chondrocytes were cultured with/or without AGE-bovine serum albumin (AGE-BSA) and the expression levels of inducible nitric oxide (iNOS), cyclooxygenase (COX)-2 microsomal prostaglandin E synthase-1 (mPGES-1) were evaluated using RT-PCR and western blot analysis. Prostaglandin E(2) (PGE(2)) was analysed by ELISA and nitric oxide (NO) was analysed by Griess reaction assay. Pharmacological studies to elucidate the involved pathway were executed using specific inhibitors of MAPK and receptor for AGE (RAGE).

RESULTS: We found that treatment of OA chondrocytes with AGE-BSA increased COX-2, mPGES-1 and iNOS mRNA and protein, as well as elevating production of PGE(2) and NO. Pre-treatment with the MAPK inhibitors SP600125 (JNK inhibitor), SB202190 (p38 inhibitor) or PD98059 (ERK inhibitor) significantly inhibited AGE-BSA induction of COX-2 expression and production of PGE(2). In contrast, SN50, a nuclear factor-kappaB (NF-kappaB) inhibitor, had no effect on levels of COX-2 and PGE(2). SB202190 and SN50, but not SP600125 and PD98059, decreased AGE-BSA-induced production of NO. Pre-treatment with soluble receptor for AGE (sRAGE) also reduced AGE-stimulated COX-2, iNOS and PGE(2), implicating the involvement of RAGE.

CONCLUSIONS: These results show that AGE may augment inflammatory responses in OA chondrocytes by increasing PGE(2) and NO levels, possibly via the MAPK pathway for PGE(2) and the NF-kappaB pathway for NO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app