JOURNAL ARTICLE

Surface modification of gamma-Fe2O3@SiO2 magnetic nanoparticles for the controlled interaction with biomolecules

Randy De Palma, Jesse Trekker, Sara Peeters, Margriet J Van Bael, Kristien Bonroy, Roel Wirix-Speetjens, Gunter Reekmans, Wim Laureyn, Gustaaf Borghs, Guido Maes
Journal of Nanoscience and Nanotechnology 2007, 7 (12): 4626-41
18283855
Modifying the surface of magnetic nanoparticles (MNPs) to allow for controlled interaction with biomolecules enables their implementation in biomedical applications such as contrast agents for magnetic resonance imaging, labels in magnetic biosensing or media for magnetically assisted bioseparation. In this paper, self-assembly of trialkoxysilanes is used to chemically functionalize the surface of gamma-Fe2O3@SiO2 core-shell particles. First, the silane deposition procedure was optimized using infrared analysis in order to obtain maximum packing density of the silanes on the particles. The surface coverage was determined to be approximately 8 x 10(14) molecules/cm2. It was shown that the magnetic, crystalline, and morphological properties of the MNPs were not altered by deposition of a thin silane coating. The optimized procedure was transferred for the deposition of aldehyde and poly(ethylene glycol) (PEG) presenting silanes. The presence of both silanes on the particle surface was confirmed using XPS and FTIR. The interaction of proteins with silane-modified MNPs was monitored using a Bradford protein assay. Our results demonstrate that, by introducing aldehyde functions, the MNPs are capable of covalently binding human IgG while retaining their specific binding capacity. Maximum surface coverage occurs at 46 microg antibodies per mg particle, which corresponds to 35 antibodies bound to an average sized MNP (54 nm in diameter). The human IgG functionalized MNPs exhibit a high degree of specificity (approximately 90%) and retained a binding capacity of 32%. Using the same approach, streptavidin was coupled onto the MNPs and the biotin binding capacity was determined using biotinylated fluorescein. At maximum surface coverage, a biotin binding capacity of 1500 pmol/mg was obtained, corresponding to a streptavidin activity of 76%. On the other hand, by introducing PEG functions the non-specific adsorption of serum proteins could be significantly suppressed down to approximately 3 microg/mg. We conclude that self-assembly of silane films creates a generic platform for the controlled interactions of MNPs with biomolecules.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
18283855
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"