JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Tumor-selective replication of an oncolytic adenovirus carrying oct-3/4 response elements in murine metastatic bladder cancer models.

Clinical Cancer Research 2008 Februrary 16
PURPOSE: Oncolytic adenoviruses are attractive therapeutics for cancer because they selectively replicate in tumors. However, targeting tumor metastasis remains a major challenge for current virotherapy for cancer. Oct-3/4 is specifically expressed in embryonic stem cells and tumor cells. Oct-3/4 highly expressed in cancer cells may be a potential target for cancer therapy. We developed an E1B-55 kDa-deleted adenovirus, designated Ad.9OC, driven by nine copies of Oct-3/4 response element for treating Oct-3/4-expressing metastatic bladder cancer.

EXPERIMENTAL DESIGN: We examined the expression of Oct-3/4 in human bladder tumor tissues and bladder cancer cell lines. We also evaluated the cytolytic and antitumor effects of Ad.9OC on bladder cancer cells in vitro and in vivo.

RESULTS: Oct-3/4 expression was detected in bladder cancer cell lines, as well as in human bladder tumor tissues. Notably, Oct-3/4 expression was higher in metastatic compared with nonmetastatic bladder cancer cells. Ad.9OC induced higher cytolytic activity in metastatic bladder cancer cells than in their nonmetastatic counterparts, whereas it did not cause cytotoxicity in normal cells. Pharmacologic and short hairpin RNA-mediated Oct-3/4 inhibition rendered bladder cancer cells more resistant to Ad.9OC-induced cytolysis. Replication of Ad.9OC was detected in murine bladder cancer cells and bladder tumor tissues. We also showed the effectiveness of Ad.9OC for treating bladder cancer in subcutaneous, as well as metastatic, bladder tumor models.

CONCLUSIONS: Ad.9OC may have therapeutic potential for treating Oct-3/4-expressing tumors. Especially, metastatic bladder tumors are good target for Ad.9OC treatment. Because Oct-3/4 is expressed in a broad spectrum of cancers, Ad.9OC may be broadly applicable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app