Effect of endothelin receptor antagonists on ventricular susceptibility in postinfarcted rats

Tsung-Ming Lee, Chien-Chang Chen, Mei-Shu Lin, Nen-Chung Chang
American Journal of Physiology. Heart and Circulatory Physiology 2008, 294 (4): H1871-9
This study investigated whether selective endothelin (ET) type A (ET(A)) or nonselective ET(A)/ET(B) receptor blockade exerted antiarrhythmic effects through attenuated sympathetic reinnervation after infarction. Twenty-four hours after ligation of the left anterior descending artery, male Wistar rats received either vehicle, ABT-627 (selective ET(A) receptor antagonist), bosentan (nonselective ET(A)/ET(B) receptor antagonist), or hydralazine for 4 wk. The measurement of myocardial ET-1 levels at the remote zone revealed a significant increase in vehicle-treated infarcted rats compared with sham-operated rats, consistent with increased activities of ET-1 after infarction. Sympathetic nerve function changes assessed by the norepinephrine content of myocardium and the dialysate and plasma dihydroxyphenylglycol levels were parallel to ET-1 levels. Immunohistochemical analysis for tyrosine hydroxylase, growth-associated protein 43, and neurofilament also confirmed the change of nerve function. This was accompanied with a significant upregulation of nerve growth factor protein expression and mRNA in the vehicle-treated infarcted rats, which reduced after the administration of either ET(A) or ET(A)/ET(B) blockade to a similar extent. The beneficial effects of ET receptor antagonists on sympathetic nerve function and structures were dissociated from their blood pressure-lowering effect because ET receptor antagonists and hydralazine reduced arterial pressure similarly. Arrhythmic severity during programmed stimulation in ET receptor antagonists-treated rats was significantly lower than that in vehicle-treated infarcted rats. Our data indicate that the ET system, especially via ET(A) receptors, plays an important role in attenuating sympathetic reinnervation after infarction. Independent of their hemodynamic effects, a chronic use of either ET(A) or ET(A)/ET(B) antagonists may modify the arrhythmogenic response to programmed electrical stimulation.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"