Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Agonists at PPAR-gamma suppress angiotensin II-induced production of plasminogen activator inhibitor-1 and extracellular matrix in rat cardiac fibroblasts.

BACKGROUND AND PURPOSE: Peroxisome proliferator-activated receptor (PPAR)-gamma ligands have been shown to inhibit cardiac fibrosis. However, the underlying mechanisms are poorly understood. We investigated the regulation by PPAR-gamma ligands of angiotensin (Ang) II-induced plasminogen activator inhibitor (PAI)-1, extracellular matrix (ECM) production and cell growth in cardiac fibroblasts.

EXPERIMENTAL APPROACH: The effects of PPAR-gamma ligands on Ang II-induced PAI-1, ECM expression and cell growth were assessed in primary-cultured rat cardiac fibroblasts; cardiac PAI-1 and ECM production was examined in Ang II-infused rats.

KEY RESULTS: In growth-arrested cardiac fibroblasts, PPAR-gamma ligands rosiglitazone and 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) dose-dependently attenuated Ang II-induced cell proliferation and expression of PAI-1, collagen type-I, collagen type-III and fibronectin. An accompanying increase in PPAR-gamma expression and activation was also observed. These suppressive effects were attenuated by the PPAR-gamma antagonists GW9662 and bisphenol A diglycidyl ether (BADGE). Moreover, rosiglitazone and 15d-PGJ2 inhibited in part the expression and phosphorylation of Ang II-induced transforming growth factor (TGF)-beta1, Smad2/3 and c-Jun NH(2)-terminal kinase (JNK). Ang II infusion in rats markedly increased left ventricular production of PAI-1, collagen and fibronectin, with a concurrent increase in the ratios of heart weight/body weight and left ventricle weight/body weight. Co-treatment with rosiglitazone significantly decreased these levels and upregulated PPAR-gamma expression.

CONCLUSIONS AND IMPLICATIONS: Rosiglitazone and 15d-PGJ2 suppress Ang II-induced production of PAI-1 and ECM probably via interactions between PPAR-gamma and TGF-beta1/Smad2/3 and JNK signalling pathways. It is suggested that PPAR-gamma and its ligands may have potential applications in preventing cardiac fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app