JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Molecular mechanism of ADP-ribosyl cyclase activation in angiotensin II signaling in murine mesangial cells.

ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca(2+)-mobilizing second messenger cyclic ADP-ribose (cADPR) from NAD(+). In this study, we investigated the molecular basis of ADPR-cyclase activation and the following cellular events in angiotensin II (ANG II) signaling in mouse mesangial cells (MMCs). Treatment of MMCs with ANG II induced an increase in intracellular Ca(2+) concentrations through a transient Ca(2+) release via an inositol 1,4,5-trisphosphate receptor and a sustained Ca(2+) influx via L-type Ca(2+) channels. The sustained Ca(2+) signal, but not the transient Ca(2+) signal, was blocked by a cADPR antagonistic analog, 8-bromo-cADPR (8-Br-cADPR), and an ADPR-cyclase inhibitor, 4,4'-dihydroxyazobenzene (DHAB). In support of the results, ANG II stimulated cADPR production in a time-dependent manner, and DHAB inhibited ANG II-induced cADPR production. Application of pharmacological inhibitors revealed that activation of ADPR-cyclase by ANG II involved ANG II type 1 receptor, phosphoinositide 3-kinase, protein tyrosine kinase, and phospolipase C-gamma1. Moreover, DHAB as well as 8-Br-cADPR abrogated ANG II-mediated Akt phosphorylation, nuclear translocation of nuclear factor of activated T cell, and uptake of [(3)H]thymidine and [(3)H]leucine in MMCs. These results demonstrate that ADPR-cyclase in MMCs plays a pivotal role in ANG II signaling for cell proliferation and protein synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app