Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

EEG alpha distinguishes between cuneal and precuneal activation in working memory.

NeuroImage 2008 April 16
In the literature on EEG during working memory (WM), the role of alpha power (8-13 Hz) during WM retention has remained unclear. We recorded EEG while 18 subjects retained sets of consonants in memory for 3 s; setsize (ss4, ss6, ss8) determines memory workload. Theta power (4-8 Hz) increased with workload in all subjects in middle frontal electrodes. Using ICA, the increase in theta could be attributed to one component whose generators were localized by sLORETA in the medial frontal gyrus. Alpha power in parietal electrode Pz showed a mean increase during retention as compared to prestimulus fixation (event-related synchronization, ERS). On an individual basis, alpha power increased with workload in 9 subjects (WL+ group) and decreased in 9 subjects (WL- group). The alpha increased in upper alpha for the WL+ group (mean: 10.4 Hz) and decreased in lower alpha for the WL- group (mean: 8.9 Hz). Time-frequency representations show high alpha power early during retention for the WL+ group and high alpha power late during retention for the WL- group. sLORETA revealed maximal contrast for the WL+ group in the cuneus and for the WL- group in the precuneus. In subjects with WL+, alpha increase in the cuneus may reflect WM maintenance or active inhibition of task-irrelevant areas. In subjects with WL-, alpha decrease in the precuneus may reflect release of inhibition associated with attentional demands. Thus, alpha EEG characterizes two aspects of processing in the same WM task.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app