Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Photo-induced toxicity of four polycyclic aromatic hydrocarbons, singly and in combination, to the marine diatom Phaeodactylum tricornutum.

Polycyclic aromatic hydrocarbons (PAHs) enter the aquatic environment by various routes and are usually found as mixtures in the water. Many studies have shown that solar ultraviolet (UV) radiation can greatly enhance the toxicity of some PAHs to a variety of marine species. In the present study, we tested the phototoxicity of four PAHs with simple structures, both alone and in binary combinations, to a species of marine diatom, Phaeodactylum tricornutum, in the laboratory. The results indicated that simulated solar UV radiation not only enhanced the toxicity of the different PAHs to this alga, but also changed their relative toxic strengths. The photo-induced toxicity of PAHs to this alga might be a synergistic effect of photo-modification and photosensitization reactions, causing the microalgal cells to suffer oxidative stress. Four binary mixtures of these PAHs were found to have a synergistic joint action mode, while two binary mixtures displayed an antagonistic reaction, revealing a complex pattern of possible interactions of PAHs with marine diatoms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app