Decentralized output-feedback neural control for systems with unknown interconnections

Weisheng Chen, Junmin Li
IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics 2008, 38 (1): 258-66
An adaptive backstepping neural-network control approach is extended to a class of large-scale nonlinear output-feedback systems with completely unknown and mismatched interconnections. The novel contribution is to remove the common assumptions on interconnections such as matching condition, bounded by upper bounding functions. Differentiation of the interconnected signals in backstepping design is avoided by replacing the interconnected signals in neural inputs with the reference signals. Furthermore, two kinds of unknown modeling errors are handled by the adaptive technique. All the closed-loop signals are guaranteed to be semiglobally uniformly ultimately bounded, and the tracking errors are proved to converge to a small residual set around the origin. The simulation results illustrate the effectiveness of the control approach proposed in this correspondence.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"