Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Gelatin microspheres containing TGF-beta3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture.

The study is to investigate the chondrogenesis of a kind of modified cell pellet formed using mesenchymal stem cells (MSCs) and gelatin microspheres containing transforming growth factor beta3 (TGF-beta3). The gelatin microspheres loaded with TGF-beta3 (MS-TGF) were prepared and showed the controlled release of cytokine in a biphasic fashion. Then the mixture of MSCs and MS-TGF was centrifuged to form pellet. The pellet was cultured over 4 weeks to determine the effects of MS-TGF on cartilage matrix production by biochemical analysis, immunohistochemistry staining, and Western blot test. The transcription level of cartilage-related genes was also evaluated by real-time quantitative RT-PCR assay. After 4 weeks of culture, the MSCs were distributed uniformly in the pellet and had good viability. Cells showed faster proliferation and higher DNA content compared to MSCs in a conventional pellet. The production of collagen and glycosaminoglycan also increased significantly. The immunohistochemistry staining and alcian blue staining confirmed the synthesis of cartilage extracellular matrix (ECM). Furthermore, the differentiated MSCs located in lacunae within the metachromatic staining matrix exhibited the typical chondrocyte morphology. The chondrogenic differentiation of MSCs was proved by the expression of collagen II gene in mRNA and protein level. The results indicate that MS-TGF can induce chondrogenic differentiation of MSCs and increase cartilage ECM production, which result in a bigger cartilage pellet. In conclusion, this modified pellet culture can provide an easy and effective way to construct the tissue-engineered cartilage in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app