JOURNAL ARTICLE

Sharply increased insect herbivory during the Paleocene-Eocene Thermal Maximum

Ellen D Currano, Peter Wilf, Scott L Wing, Conrad C Labandeira, Elizabeth C Lovelock, Dana L Royer
Proceedings of the National Academy of Sciences of the United States of America 2008 February 12, 105 (6): 1960-4
18268338
The Paleocene-Eocene Thermal Maximum (PETM, 55.8 Ma), an abrupt global warming event linked to a transient increase in pCO2, was comparable in rate and magnitude to modern anthropogenic climate change. Here we use plant fossils from the Bighorn Basin of Wyoming to document the combined effects of temperature and pCO2 on insect herbivory. We examined 5,062 fossil leaves from five sites positioned before, during, and after the PETM (59-55.2 Ma). The amount and diversity of insect damage on angiosperm leaves, as well as the relative abundance of specialized damage, correlate with rising and falling temperature. All reach distinct maxima during the PETM, and every PETM plant species is extensively damaged and colonized by specialized herbivores. Our study suggests that increased insect herbivory is likely to be a net long-term effect of anthropogenic pCO2 increase and warming temperatures.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
18268338
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"