JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss.

Mechanosensing is one of the crucial components of the biological events. In bone, as observed in unloading-induced osteoporosis in bed ridden patients, mechanical stress determines the levels of bone mass. Many molecules have been suggested to be involved in sensing mechanical stress in bone, while the full pathways for this event has not yet been identified. We examined the role of TRPV4 in unloading-induced bone loss. Hind limb unloading induced osteopenia in wild-type mice. In contrast, TRPV4 deficiency suppressed such unloading-induced bone loss. As underlying mechanism for such effects, TRPV4 deficiency suppressed unloading-induced reduction in the levels of mineral apposition rate and bone formation rate. In these mice, unloading-induced increase in the number of osteoclasts in the primary trabecular bone was suppressed by TRPV4 deficiency. Unloading-induced reduction in the longitudinal length of primary trabecular bone was also suppressed by TRPV4 deficiency. TRPV4 protein is expressed in both osteoblasts and osteoclasts. These results indicated that TRPV4 plays a critical role in unloading-induced bone loss.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app