JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cardiovascular and cerebrovascular responses to acute isocapnic and poikilocapnic hypoxia in humans.

We examined the cardiovascular and cerebrovascular responses to acute isocapnic (IH) and poikilocapnic hypoxia (PH) in 10 men (25.7 +/- 4.2 yr, mean +/- SD). Heart rate (HR), mean arterial pressure (MAP), and mean peak middle cerebral artery blood flow velocity (Vp) were measured continuously during two randomized protocols of 20 min of step IH and PH (45 Torr). HR was elevated during both IH (P < 0.01) and PH (P < 0.01), with no differences observed between conditions. MAP was modestly elevated across all time points during IH but only became elevated after 5 min during PH. During IH, Vp was elevated from baseline throughout the exposure with a consistent hypoxic sensitivity of approximately 0.34 cm x s(-1).%desaturation(-1) (P < 0.05). The Vp response to PH was biphasic with an initial decrease from baseline occurring at 79 +/- 23 s, followed by a subsequent elevation, becoming equivalent to the IH response by 10 min. The nadir of the PH response exhibited a hypoxic sensitivity of -0.24 cm x s(-1) x % desaturation(-1). When expressed in relation to end-tidal Pco2, a sensitivity of -1.08 cm x s(-1).Torr(-1) was calculated, similar to previously reported sensitivities to euoxic hypocapnia. Cerebrovascular resistance (CVR) was not changed during IH. During PH, an initial increase in CVR was observed. However, CVR returned to baseline by 20 min of PH. These data show the cerebrovascular response to PH consists of an early hypocapnia-mediated response, followed by a secondary increase, mediated predominantly by hypoxia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app