JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Lysozyme, a mediator of sepsis that produces vasodilation by hydrogen peroxide signaling in an arterial preparation.

In septic shock, systemic vasodilation and myocardial depression contribute to the systemic hypotension observed. Both components can be attributed to the effects of mediators that are released as part of the inflammatory response. We previously found that lysozyme (Lzm-S), released from leukocytes, contributed to the myocardial depression that develops in a canine model of septic shock. Lzm-S binds to the endocardial endothelium, resulting in the production of nitric oxide (NO), which, in turn, activates the myocardial soluble guanylate cyclase (sGC) pathway. In the present study, we determined whether Lzm-S might also play a role in the systemic vasodilation that occurs in septic shock. In a phenylephrine-contracted canine carotid artery ring preparation, we found that both canine and human Lzm-S, at concentrations similar to those found in sepsis, produced vasorelaxation. This decrease in force could not be prevented by inhibitors of NO synthase, prostaglandin synthesis, or potassium channel inhibitors and was not dependent on the presence of the vascular endothelium. However, inhibitors of the sGC pathway prevented the vasodilatory activity of Lzm-S. In addition, Aspergillus niger catalase, which breaks down H(2)O(2), as well as hydroxyl radical scavengers, which included hydroquinone and mannitol, prevented the effect of Lzm-S. Electrochemical sensors corroborated that Lzm-S caused H(2)O(2) release from the carotid artery preparation. In conclusion, these results support the notion that when Lzm-S interacts with the arterial vasculature, this interaction results in the formation of H(2)O(2), which, in turn, activates the sGC pathway to cause relaxation. Lzm-S may contribute to the vasodilation that occurs in septic shock.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app