Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro.

Mesenchymal stem cells (MSC) have been characterized as multipotent cells which are able to differentiate into several mesodermal and nonmesodermal lineage cells and this feature along with their extensive growth and comprehensive immunomodulatory properties establish them as a promising tool for therapeutic applications, including cell-based tissue engineering and treatment of immune-mediated disorders. Although bone marrow (BM) is the most common MSC source, cells with similar characteristics have been shown to be present in several other adult tissues. Adipose tissue (AT), large quantities of which can be easily obtained, represents an attractive alternative to BM in isolating adipose tissue-derived MSC (AT-MSC). BM-MSCs and AT-MSCs share some immunomodulatory properties as they are both not inherently immunogenic and suppress the proliferation of alloantigen- or mitogen-stimulated T-cells. Our purpose was to comparatively examine under appropriate in vitro conditions, phenotypes, morphology and some functional properties of BM-MSCs and AT-MSCs, such as differentiation potential and especially the ability to suppress the immunoglobulin production by mitogen-stimulated B-cells. While the morphological, immunophenotypical, colony-forming and adipogenic characteristics of both types of cells were almost identical, AT-MSCs showed less potential for osteogenic differentiation than BM-MSCs. We found that AT-MSCs not only inhibited the Ig-production but also suppressed this B-cell function to a much greater extent compared to BM-MSC. This finding supports the potential role of AT-MSCs as an alternative to BM-MSCs for clinical purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app