Add like
Add dislike
Add to saved papers

Vertical stratification and development aspects of phlebotomine sand flies (Diptera: Psychodidae) in an area of Atlantic Forest tree species in a metropolitan region in northeastern Brazil.

In the state of Rio Grande do Norte in northeast Brazil, cases of visceral leishmaniasis (VL) occur mainly in the periurban areas of the city of Natal. Lutzomyia longipalpis Lutz & Neiva 1912 (Diptera: Psychodidae), a vector of Leishmania chagasi (Protozoa: Trypanosomatidae) to humans, is found throughout the state. Flora and fauna influence the distribution of sand fly species, whose horizontal or vertical stratification can be used as a parameter for identifying potential vectors, considering the presence of vertebrate hosts in the area. The purpose of this study was to obtain information about the vertical stratification of phlebotomine sand flies in an endemic area of leishmaniasis in Rio Grande do Norte, and associate it with the presence of other animals in the peridomiciliary environment as well as to analyze, under laboratory conditions, aspects of L. longipalpis reproduction in wild females. The sand flies were captured with light traps hung at different heights in species of Atlantic Forest trees and in a peridomiciliary environment in animal shelters. The traps were placed between 17:30 and 6:00 of the following day, in a peridomiciliary and extradomiciliary area of a forest fragment in both dry and rainy months. In the extradomiciliary environment, the traps were installed at 1, 3 and 5 m above the ground. The biological cycle of L. longipalpis was followed from the eggs of 200 wild females. Specimens of L. lenti, L. walkeri, and L. migonei were captured. The comparison and statistical analysis showed that L. longipalpis is more abundant at a height of 3 m and L. evandroi at 1 m. In the animal shelters (chickens, horses, and armadillos), we captured mainly specimens of L. longipalpis and L. evandroi. The duration of the biological cycle of L. longipalpis was approximately 38 days at a temperature of 28 degrees C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app