Excited-state absorption and ultrafast relaxation dynamics of porphyrin, diprotonated porphyrin, and tetraoxaporphyrin dication

Agnese Marcelli, Paolo Foggi, Laura Moroni, Cristina Gellini, Pier Remigio Salvi
Journal of Physical Chemistry. A 2008 March 6, 112 (9): 1864-72
The relaxation dynamics of unsubstituted porphyrin (H2P), diprotonated porphyrin (H4P2+), and tetraoxaporphyrin dication (TOxP2+) has been investigated in the femtosecond-nanosecond time domain upon photoexcitation in the Soret band with pulses of femtosecond duration. By probing with spectrally broad femtosecond pulses, we have observed transient absorption spectra at delay times up to 1.5 ns. The kinetic profiles corresponding with the band maxima due to excited-state absorption have been determined for the three species. Four components of the relaxation process are distinguished for H2P: the unresolvably short B --> Qy internal conversion is followed by the Qy --> Qx process, vibrational relaxation, and thermalization in the Qx state with time constant approximately 150 fs, 1.8 ps, and 24.9 ps, respectively. Going from H2P to TOxP2+, two processes are resolved, i.e., B --> Q internal conversion and thermal equilibration in the Q state. The B --> Q time constant has been determined to be 25 ps. The large difference with respect to the B --> Qy time constant of H2P has been related to the increased energy gap between the coupled states, 9370 cm-1 in TOxP2+ vs 6100 cm-1 in H2P. The relaxation dynamics of H4P2+ has a first ultrafast component of approximately 300 fs assigned as internal conversion between the B (or Soret) state and charge-transfer (CT) states of the H4P2+ complex with two trifluoroacetate counterions. This process is followed by internal CT --> Q conversion (time constant 9 ps) and thermalization in the Q state (time constant 22 ps).

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"