Add like
Add dislike
Add to saved papers

An adaptive link position tracking controller for rigid-link flexible-joint robots without velocity measurements.

This paper presents an adaptive partial state feedback controller for rigid-link flexible-joint (RLFJ) robots. The controller compensates for parametric uncertainty throughout the entire mechanical system while only requiring measurement of link position and actuator position. To eliminate the need for measuring link velocity and actuator velocity a set of filters is utilized as a surrogate for the unmeasurable quantities. Based on this set of filters, an adaptive integrator backstepping procedure is used to develop a torque input controller which guarantees semiglobal asymptotic link position tracking while also ensuring that all signals remain bounded during closed-loop operation. Simulation results for a two-link RLFJ robot are utilized to validate the performance of the proposed controller.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app