TGF-beta1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscle cells requires pp60(c-src)/EGFR(Y845) and Rho/ROCK signaling

Rohan Samarakoon, Stephen P Higgins, Craig E Higgins, Paul J Higgins
Journal of Molecular and Cellular Cardiology 2008, 44 (3): 527-38
TGF-beta1 and its target gene encoding plasminogen activator inhibitor-1 (PAI-1) are major causative factors in the pathology of tissue fibrosis and vascular disease. The increasing complexity of TGF-beta1 action in the cardiovascular system requires analysis of specific TGF-beta1-initiated signaling events that impact PAI-1 transcriptional regulation in a physiologically-relevant cell system. TGF-beta1-induced PAI-1 expression in both primary cultures and in an established line (R22) of vascular smooth muscle cells (VSMC) was completely blocked by inhibition of epidermal growth factor receptor (EGFR) activity or adenoviral delivery of a kinase-dead EGFR(K721A) construct. TGF-beta1-stimulated PAI-1 expression, moreover, was preceded by EGFR phosphorylation on Y845 (a src kinase target residue) and required pp60(c-src) activity. Infection of VSMC with an adenovirus encoding the EGFR(Y845F) mutant or transfection with a dominant-negative pp60(c-src) (DN-Src) expression vector effectively decreased TGF-beta1-stimulated, but not PDGF-induced, PAI-1 expression implicating the pp60(c-src) phosphorylation site EGFR(Y845) in the inductive response. Consistent with these findings, TGF-beta1 failed to induce PAI-1 synthesis in src kinase-deficient (SYF(-/-/-)) fibroblasts and reexpression of a wild-type pp60(c-src) construct in SYF(-/-/-) cells rescued the PAI-1 response to TGF-beta1. TGF-beta1-induced EGFR activation, but not SMAD2 activation, moreover, was virtually undetectable in SYK(-/-/-) fibroblasts in comparison to wild type (SYK(+/+/+)) counterparts, confirming an upstream signaling role of src family kinases in EGFR(Y845) phosphorylation. Genetic EGFR deficiency or infection of VSMCs with EGFR(K721A) virtually ablated TGF-beta1-stimulated ERK1/2 activation as well as PAI-1 expression but not SMAD2 phosphorylation. Transient transfection of a dominant-negative RhoA (DN-RhoA) expression construct or pretreatment of VSMC with C3 transferase (a Rho inhibitor) or Y-27632 (an inhibitor of p160ROCK, a downstream effector of Rho) also dramatically attenuated the TGF-beta1-initiated PAI-1 inductive response. In contrast to EGFR pathway blockade, interference with Rho/ROCK signaling effectively inhibited TGF-betaR-mediated SMAD2 phosphorylation and nuclear accumulation. TGF-beta1-stimulated SMAD2 activation, moreover, was not sufficient to induce PAI-1 expression in the absence of EGFR signaling both in VSMC and mouse embryonic fibroblasts. Thus, two distinct pathways involving the EGFR/pp60(c-src)/MEK-ERK pathway and Rho/ROCK-dependent SMAD2 activation are required for TGF-beta1-induced PAI-1 expression in VSMC. The identification of such novel interactions between two TGF-beta1-activated signaling networks that specifically impact PAI-1 transcription in VSMC may provide therapeutically-relevant targets to manage the pathophysiology of PAI-1-associated cardiovascular/fibrotic diseases.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"