JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis).

Physiologia Plantarum 2007 November
Flowering and flower formation are defining features of angiosperms and the control of these developmental processes involves a common repertoire of genes which are shared among different species of flowering plants. These genes were first identified using various homeotic and flowering time mutants of Arabidopsis and snapdragon, and homologous genes have subsequently been isolated from a wide range of different plant species based on the conservation of protein sequence and function. Using degenerate reverse-transcriptase polymerase chain reaction, we have isolated one APETALA3-like (CitMADS8) and two SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1)-like (CsSL1 and CsSL2) homologues from sweet orange (Citrus sinensis L.). Although the translated amino acid sequence of CitMADS8 shares many similarities with other higher plant APETALA3 proteins, CitMADS8 fails to complement the floral organ identity defects of the Arabidopsis ap3-3 mutant. By contrast, the two citrus SOC1-like genes, particularly CsSL1, are able to shorten the time taken to flower in the Arabidopsis wild-type ecotypes Columbia and C24, and functionally complement the late flowering phenotype of the soc1 mutant, essentially performing the endogenous function of Arabidopsis SOC1. Once flowering has commenced, interactions between specific flowering genes and a gene required for meristem maintenance, WUSCHEL, ensure that the Arabidopsis flower is a determinate structure with four whorls. We have isolated a citrus WUSCHEL homologue (CsWUS) that is capable of restoring most of the meristem function to the shoots and flowers of the Arabidopsis wus-1 mutant, implying that CsWUS is the functional equivalent of Arabidopsis WUSCHEL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app