Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

BMP-2 regulation of PTHrP and osteoclastogenic factors during osteoblast differentiation of C2C12 cells.

Bone morphogenetic protein-2 (BMP-2) is strongly involved in the induction of osteoblast differentiation from mesenchymal cell precursors, as well as in enhancing bone matrix production by osteoblastic cells. Likewise, the osteoporotic phenotype of PTHrP deficient mice makes clear the importance of this paracrine regulator in bone physiology. Here, we report that BMP-2 rapidly down-regulated PTHrP gene expression through a transcriptional mechanism in pluripotent mesenchymal C2C12 cells, whereas BMP-2 increased expression of PTHrP receptor. PTHrP did not significantly alter the BMP-dependent Smad transcriptional pathway. Similarly, PTHrP did not significantly modify the BMP-regulated expression of RANKL or OPG, cytokines involved in osteoclastogenesis. More importantly, addition of PTHrP, through the PKA signaling pathway, partially prevented the BMP-dependent induction of some osteogenic markers such as Runx2 and Osterix in C2C12 cells. Our data suggest that BMP-2 down-regulation of PTHrP could facilitate terminal differentiation of osteoblasts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app