Soil microbial responses to temporal variations of moisture and temperature in a chihuahuan desert grassland

Colin Bell, Nancy McIntyre, Stephen Cox, David Tissue, John Zak
Microbial Ecology 2008, 56 (1): 153-67
Global climate change models indicate that storm magnitudes will increase in many areas throughout southwest North America, which could result in up to a 25% increase in seasonal precipitation in the Big Bend region of the Chihuahuan Desert over the next 50 years. Seasonal precipitation is a key limiting factor regulating primary productivity, soil microbial activity, and ecosystem dynamics in arid and semiarid regions. As decomposers, soil microbial communities mediate critical ecosystem processes that ultimately affect the success of all trophic levels, and the activity of these microbial communities is primarily regulated by moisture availability. This research is focused on elucidating soil microbial responses to seasonal and yearly changes in soil moisture, temperature, and selected soil nutrient and edaphic properties in a Sotol Grassland in the Chihuahuan Desert at Big Bend National Park. Soil samples were collected over a 3-year period in March and September (2004-2006) at 0-15 cm soil depth from 12 3 x 3 m community plots. Bacterial and fungal carbon usage (quantified using Biolog 96-well micro-plates) was related to soil moisture patterns (ranging between 3.0 and 14%). In addition to soil moisture, the seasonal and yearly variability of soil bacterial activity was most closely associated with levels of soil organic matter, extractable NH(4)-N, and soil pH. Variability in fungal activity was related to soil temperatures ranging between 13 and 26 degrees C. These findings indicate that changes in soil moisture, coupled with soil temperatures and resource availability, drive the functioning of soil-microbial dynamics in these desert grasslands. Temporal patterns in microbial activity may reflect the differences in the ability of bacteria and fungi to respond to seasonal patterns of moisture and temperature. Bacteria were more able to respond to moisture pulses regardless of temperature, while fungi only responded to moisture pulses during cooler seasons with the exception of substantial increased magnitudes in precipitation occurring during warmer months. Changes in the timing and magnitude of precipitation will alter the proportional contribution of bacteria and fungi to decomposition and nitrogen mineralization in this desert grassland.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"